Single-flux-quantum circuits for spiking neuron devices
نویسندگان
چکیده
منابع مشابه
Pulsed neural networks consisting of single-flux-quantum spiking neurons
An inhibitory pulsed neural network was developed for brain-like information processing, by using single-flux-quantum (SFQ) circuits. It consists of spiking neuron devices that are coupled to each other through all-to-all inhibitory connections. The network selects neural activity. The operation of the neural network was confirmed by computer simulation. SFQ neuron devices can imitate the opera...
متن کاملRecent Progress in Rapid-Single-Flux-Quantum Circuits
We describe recent topics of rapid-single-flux-quantum (RSFQ) circuits. Much higher integration and higher-speed operation are required for commercializing the RSFQ circuits in any application. To satisfy this requirement, we measure several kinds of time fluctuations that possibly limit the integration level and operating speed, and introduce the flexible passive transmission line technology i...
متن کاملTiming of Multi-Gigahertz Rapid Single Flux Quantum Digital Circuits
Rapid Single Flux Quantum (RSFQ) logic is a digital circuit technology based on superconductors that has emerged as a possible alternative to advanced semiconductor technologies for large scale ultra-high speed, very low power digital applications. Timing of RSFQ circuits at frequencies of tens to hundreds of gigahertz is a challenging and still unresolved problem. Despite the many fundamental ...
متن کاملCapacity of a Single Spiking Neuron Channel
Information transfer through a single neuron is a fundamental component of information processing in the brain, and computing the information channel capacity is important to understand this information processing. The problem is difficult since the capacity depends on coding, characteristics of the communication channel, and optimization over input distributions, among other issues. In this le...
متن کاملCapacity of a Single Spiking Neuron
It is widely believed the neurons transmit information in the form of spikes. Since the spike patterns are known to be noisy, the neuron information channel is noisy. We have investigated the channel capacity of this “Spiking neuron channel” for both of the “temporal coding” and the “rate coding,”which are two main coding considered in the neuroscience[1, 2]. As the result, we’ve proved that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Congress Series
سال: 2006
ISSN: 0531-5131
DOI: 10.1016/j.ics.2006.02.005